Modern Biotechnology: Ethical Issues, Ethical Principles and Guidelines


Scientists have used  biotechnology  for  centuries to enhance the production, availability and  quality of food  and  medicine.  Some conventional biotechnology techniques that  has been documented  for  decades includes  the  use  of microorganism in  fermentation to make bread, wine or applying rennin  to make cheese  (Propst 1996; FAO 2001).  However within recent times, the development of modern  biotechnology  has involved powerful  new techniques  better  known as Molecular Biology  that allows scientists to  tackle  the  previous  goals with more finesse and speed  such  as  recombinant  DNA and genetic engineering,  cell fusion, bioprocess and structurally-based molecular design.  Given that the technology  is new, has immense  potential,  is rapidly  developing, and  can be applied  to  all living  beings,  it can be used  for  beneficial purposes  but there  are also  risks (Macer  2006). It  is a sophisticated technology  that  needs advanced laboratory  facilities and  particular environmental  conditions that  require investment. Modern biotechnology  has been  particularly  successfully  used and applied  in food, agriculture,  medicine  and  pharmacy. 

Because modern  biotechnology is  still considered as a  new technology and the advancement in  these areas  have been  so  rapid,  it  has been  the  object  of some  doubts, fears,  concerns as well as  an  intense  and divisive  debate  worldwide on the potential risks  to  human health,  the  environment and  society. Modern biotechnology  has  been  classified as  a complex emerging issue  that exhibits high  salience  combined with limited knowledge  on  part of  the  public. Jacques Diouf, the  FAO Director-General, in  the  foreword  of the  FAO Ethic  Series (FAO 2001),  mentioned that technological advances and  organizational changes affecting  food and  agriculture systems  over  the past years  have  been  both radical and rapid; their repercussions, however, will  be  felt for  a long time  to come  and, in  many  cases, the consequences may  be  irreversible.  Science continues to  broaden  our  horizons,  offering  us new options that  invariably  give rise to  controversy.  The introduction  of  genetically  modified organisms  (GMOs) into  the  environment  has  become  highly  controversial  worldwide. Many consumer, environmental  groups  and  some scientists  (Bernauer  &  Meins 2001; Regal 1994;  Ho  1998/1999; Fagan  2000) have voiced strong concerns over  the immediate  and long term effects of  GMOs on  human health  and environment. Broader social, ethical, religious,  and  economic issues  associated with biotechnology has  also  been raised  (Thompson 1997;  BABAS 1999). According to  Batalion  (2000), the  central problem underlying biotechnology is  not  just its short-term  benefits and  long  term drawbacks, but  the overall  attempt to ‘control’ living nature  on  an  erroneous mechanistic  view.  We as human  have conscience and religious belief. Many religions  do  not allow unrestricted interference with life  such as genetic  engineering (Epstein  1998).  The  pace  of  discovery  in  geneticbased biotechnology is very rapid and there is anxiety that a  kind  of  technological compulsion  (‘if we can  do  it,  let’s do  it’)  will drive developments ahead  of  proper ethical consideration  of their  propriety (Polkinghorn  2000). In this paper  several ethical  issues related  to  modern  biotechnology,  key ethical principles  and guidelines  on  how to address the  ethical  issues  related to  modern  biotechnology will be discussed.

Basic categories  of  moral or  ethical concerns regarding modern  biotechnology fall into two  classes: intrinsic  and  extrinsic  (Comstock 2000;  Hamid  2000).


Extrinsic  objection  refers to  the  concerns regarding  the  application  of  the technologies such  as the possible risks  of  different application  of biotechnology, consumer’s  right and  patenting issues.  All  these  issues need  to  be addressed as  they  have  far-reaching  consequences  on the  safety  of  human, environment and society.

GMOs are ‘novel’ products which have the potential  to reduce or  change nature’s biodiversity  (BABAS 1999; Phillips  1994; Third World Network 1995) or  to upset the  balance of  nature  perhaps  in unintended ways  (FAO  2001).   For example, the environmentalists are  concerned about  the possibility  of  GM  crops having herbicide or  insecticide  resistance  to cross-pollinate  with  wild or  related species, and  unintentionally  create  hard-to-eradicate  super-weeds respectively  (Hails 2000; Kaiser 1999). There  is also  concern  on  the  possibility  of  horizontal gene transfer of  transgenic DNA  and the  potential  to  create  new viruses and bacteria that cause diseases  (Hails  2000; Phillips 1994; Ho  1998/1999).  Certain genetic alteration  in animal or  plant  pathogens  have  led to  enhance  virulence  and increased resistance  to  pesticides  and antibiotics (NAS  1987)  and the  potential of  GMOs to harm non-target organisms have been reported (Hails 2000; Goldberg & Tjaden  1990;  Ho 1998/1999).
On the  other hand,  the producers of  GMOs  claimed that  their  products did  not harm  the  environment but the fact that the  risk assessment studies  were carried  out  by  those with  vested interests,  the results have been  questioned. At the moment,  the  focus of  scientists everywhere  has been  on  the  development  of new biotechnology  products.  Little efforts have been  spent  on  independent risk assessment studies other than  those  carried out by  the producers. There is a need  for  more  comprehensive and  long term studies  on  the  impact of GMOs  on the  environment.

The  social impacts  of  biotechnology  in  agriculture and  food production  have been  classified  into three  major categories  (Thompson  1997; BABAS 1999): 

1.   Impacts  on small farms. The  most debated ethical issue  in  this  context concerns  the  possibility  of  market monopoly  by  big companies  and threatening  the survival of  small  farms.

2.  Impacts on  the  economies of  developing countries. Many  authors have forecast serious  impacts on rural economies  of the  developing countries with  a  redistribution  of  benefits from small to  large and betteroff  farmers,  according  to  the  same  pattern  predicted  for  the industrialized world.

3.  Impact on  scientific  community.  Many authors have  predicted that increasing commercialization of science would shift  the focus of research from  publicly beneficial  objectives  to more profitable corporate activities. These raised ethical  concerns about scientific purity,  the social function of  science  and public  trusts in  scientists (Thompson  1997). However, these concerns  are not restricted to food biotechnology.

Some of these  concerns have  become realities.  It is  common knowledge that most of  the  commercialized GM crops  were  dominated  by  a few  giant companies  based in  developed countries  and many  scientists are receiving grants from  industries.   These  situations need  to  addressed  by  governing bodies  at the international  and   national levels  to  make sure  the  benefits  of modern  biotechnology  products  be made accessible  to all regardless  of  economic status  and the scientific  purity  of  research  is  maintained.

 Scientists do  not  agree about the possible  consequences of  genetic engineering to  ecosystems, health  and environment  (van  Dommelen  1999) while  several others  have  acknowledged the  possible  risks  of  GMOs  to human health and environment (Fagan   2000; Manual for Assessing  Ecological & Human Health of  Genetically  Modified  Organisms 1998;  Ho  2001).  Some  analysts have  also recognized the inadequacies of  scientific risk  assessment  as a mean  of  predicting and  assessing  the likely  consequences of new technologies (Van  Dommeln 1996;  Wynne  1992; Stirling 2000).  According to  Wynne (2002),  the institutionalized  expressions  of  the  precautionary  principle  explicitly accommodate recognition  of scientific uncertainty as a problem - ‘where  there  is scientific  uncertainty,  the  precautionary  principle  may  be  applied’  (UK Government 2001). This principle  recognize the  possible  need to  intervene  to protect the  environment or  health in  cases  when  there is  scientific uncertainty about  the harmful  effects of  whatever  process  in  question. This is  because the ‘theoretical harm’ of GMOs  release  into the environment, if  it  did occur,  would be  very  extensive, perhaps  delayed,  costly  and  difficult or impossible to  remedy (Heinemann  1997; Ho 1998/1999; Epstein  1998).

Looking  at the  endless divisive  debate  and  limited  independent information  on  the safety of  GMOs  worldwide,  these  scientific  uncertainties  are real  and need  to  be addressed  in  a  realistic manner.  This  can  be done by  first  of all acknowledging  the existence  of  scientific  uncertainties followed  by  giving independent risk assessment studies  the  same  priority  as  product development studies.

Basic  consumer  claims  concerning GM  food are about the  rights  to health   to be informed  and to choose (BABAS  1999).   The  first  one  refers to food  safety and the  right of  consumers to  have  their  health  protected from possible  hazards derived from eating GM food.  Three  main  areas of  concerns area: toxicity, allergenicity  and nutritional  value.  The  second issue  is  the  right of  consumers to  know the  information  about  the  foods  offered to  them (mainly  the  natural  or GM character of food products and their  composition) so that they  can make  an informed  choice.  This freedom  is important  because there are food  related religious  or cultural belief  such  as  the  halal (Muslim dietary  rule)  and kosher (Jewish dietary  rule) practices, as  well  as  vegetarians.

Some of  the issues  in  patenting  of  GMOs  is that patenting which allows big corporations  to  have  monopoly  of genetically  modified plants  and animals violates  the  sanctity  of  life  (Uzogara 2000).  Many  critics  also  oppose the  fact that seeds are  now  regarded as  propriety products, moreover  with  the  ‘terminator gene’ technology which  renders the seeds  sterile  (Koch  1998).  The  farmers are force  to  buy  new  seeds  each year  from multinational companies  instead of sowing seeds from  previous years’ harvest.


Intrinsic objection alleged that the process  of  modern  biotechnology  is objectionable  in itself.  This  belief is  associated with the  unnaturalness  claim, changing nature  and to  play ‘God’.  People’s beliefs  about nature  play a role in their  evaluation  of the products of biotechnology  (BABAS 1999).   They  embody values  and prescriptions  about what is  morally  right or wrong to  do  to  the natural world. The argument is  as  follows: ‘Nature and all that is natural is valuable  and good  in itself;  all  forms of biotechnology are unnatural  in  that they go  against and  interfere  with  nature,  particularly  in  the  crossing  of  natural species boundaries’.  In  some  cases the general  moral  concerns  include a religious dimension when  they are accompanied by an  underlying set  of religious beliefs and principles  concerning the  relationships  between  God, nature  and human beings  (BABAS 1999).  The  central  problem underlying biotechnology  is not just its  short term benefits  and long term drawbacks, but the  overall attempt to ‘control’ living nature  on an  erroneous  mechanistic view (Batalion 2000).   Many religions  does not allow  unrestricted interference with life  such  as  genetic engineering (Epstein 1998).  In  Islam for  example, scientific research  is encouraged in order  to  understand   natural phenomenon and  the  universe, and  to  observe the  signs of  Allah’s  glory  and ultimately  to  find the  truth  (Hajj  Mustafa 2001). However, not everything that is  applicable is  necessarily  applicable,  it is important to  consider fully the  purpose and any harmful effect  towards  human, environment and society and must be in line with the rules  of Shari’ah   (9th FiqhMedical Seminar 2002;  Hajj Mustafa 2000). Issues of   halal products and sources of  genes  are also  important for  the Muslims  and the  second issue, for the vegetarians  too.

There are many ethical traditions or  principles proposed by philosophers.  Spier (2002) proposed  that  ethical traditions can  be  classified into two broad divisions: secular and spiritual. The  secular (western) division composed of  the  many ethical or  moral  philosophy theories  or  traditions available while spiritual   refers to  the  religion. Nicholas (2000)  suggested  two strand of  thinking  around  ethics and life  sciences: bioethics  and environmental ethics. Each  strand  of  thinking highlights and  frame  issues in related  but different ways.
Majority  of  philosophers  believe  that there  is no  single  principle  or tradition that should determine our conduct  or the  making of policies (Nicholas 2000). More than one  approach is needed to deal  with  the range of issues raised by  genetic  modification. The  BABAS report by  EFB  Task Group  on  Public Perception  of  Biotechnology (1999), The  Nutfield Council  on Bioethics (1999), Comstock (2000) and Thomas  (2001),  recommended the use  of  at  least three different theories  to  make  decision on GMOs related issues.  The  three  most common  theories  or principles  relevant  to  GMOs  are  the  rights  theory, utilitarianism and  the  theory  of  justice. Nicholas (2000) also  suggested  the  use of  those  theories under the  bioethics  branch.  Nutfield Council  on Bioethics (1999), and Thomas  (2001)  also highlighted the need  to  consider environmental ethics as  well.  Another  important principle  that should be considered  is the Precautionary Principle that  have  been incorporated into  the  Rio Declaration as Principle 15 and  have  been rectified by  most  countries (BABAS 1999;   Nutfield Council on  Bioethics  1999). Besides the earlier  mentioned theories  and principles, another important  tradition that need to be  seriously considered is the  religious or  spiritual aspects  and cultural values of  people  in certain  country  (Gunn  & Tudhope 2001; Hamid 2000). Some of the principles which are relevant to GMOs are described  below:

The  basis  of  this  theory: always  act so  that you  treat human  beings as autonomous individuals, and  not as mere means to  an  end (Comstock  2000). It refers  to the  right of  an  individual to  make  choices about their own life, and not to  be  subjected to the  imposition of  others. Some  of  the  earlier right theorists  are John Locke  and  Thomas  Jefferson (The  Internet  Encyclopedia  of  Philosophy). Beyleveld and Kinderlerer (1995) suggested the use of  the  ethical standards in the  international  human  rights conventions (which  are  part of international law), which  has  been  accepted  by  very  widespread consensus  worldwide, at  the political or  regulatory level. There has  been  many criticisms  of  the rights  theory too  whereby  the  common thread is that  rights  doctrines  are in some way excessively individualistic  (Stanford Encyclopedia of  Philosophy).

Theories  of  justice such as  utilitarian,  liberitarian, communitarian or egalitarian are  engaged in various ways with  the question  of the basis on  which  to  distribute resources-on  the  basis of  need,  effort,  contribution,  merit,  or  the  free market (Nicholas  2000). One of the most  influential philosopher of the  late 20th century is  John  Rawls, who  develop his theory  of  justice  by  using both  utilitarian  and liberty  principle  (Kay  1997).  According to  Oyeshile (2008),  the  plausibility  of Rawls'  maximin principle lies  in the fact  that social  harmony is indispensible inmaintaining social order. The society  has  to  operate with  such principles of justice  that  cater for the well being  of  the  less fortunate  members  of  the  society. Oyeshille (2008)  further  argued  that the  problems with that principle  is not withstanding but it is  a useful axiom for the egalitarian society.

Consequentialism  argues that one knows what is  the appropriate action,  not  on the basis of universal  duty,  but  rather  on  the basis of the outcomes  of one’s actions (Thomas  2000).  This approach is frequently  assumed in  discussions of biotechnology,  such  as those around  risk  and benefit  -  it  is the consequences of the  use  of  a  biotechnology  that  are  seen  as  important,  rather  than  any  preexisting understanding of  one’s  duty  or  the  appropriateness of  maintaining a given set  of  relationships. Thus, a consequentialist would  not  be  concerned with  moving genes across  species  per  se, but would judge  the  appropriateness of that  decision  on  the basis of the  possible or  likely  outcomes  of doing  so. Although consequentilism  is one  of  the  most influential moral theories that  can guide  our actions, some  claim that  consequentialism lacks  moral values.  Mc Elwee  (2009) argued  that consequentilism limits itself  to  claims expressed in terms of  reasons of  action  or  the  comparative value  of actions,  and eschews altogether the traditional moral categories  of  wrongness, permissibility  and obligation.

This  principle  can  be  thought of  as a simple  welfare  theory (Nicholas  2000). In light  of the unknown and  unpredictable consequences and risks  of biotechnology, opponents argue  that  regulatory  policy should approach  biotechnology  from the  stance  of  the  precautionary  principle.  With  the  precautionary  principle  as the  default mode of regulation, regulatory policy should evaluate biotechnology for its  human health,  animal health, environmental,  social, economic, cultural, ethical, and communitarian impacts (Draft Negotiating Text 1998). In  other words, opponents  of biotechnology  insist  that  the regulation  of biotechnology  be a technology  assessment, not a product regulation.
The  precautionary  principle  has  four components  while  others  argue that the  precautionary principle  must be strengthened  by adding four additional components (BNA 1999; Kershen  1999):
1.  Taking precaution  in the  face  of scientific  uncertainty. 
2.   Exploring alternatives to harmful actions. 
3.   Placing  the burden  of proof  on  proponents of an  activity  or  product rather than on  victims  or potential victims of  the  activity. 
4.   Using  democratic processes to carry  out  and enforce the principle, including  the  public  right to  informed  consent. 
5.   Precaution  must be  the  default  mode  of  all technological decision making. 
6.  Past   technological  decisions  must be  re-examined and  reformed, if needed. 
7. Precaution demands  that the mode  of regulation fits  the  scope  of  the threat. 
8.  Society  must identify  and  accommodate  itself  to  broad  patterns in ecological  processes.

 I strongly propose  that this  principle be  adopted in the present situation whereby adequate and independent risk assessments are  still limited. If  sound, complete  and independent risk  assessment studies are  fully  available in the future, then the  use  of  this principle  can be  made  optional.

Environmental ethics  draws deeply  on our  understandings of  ‘nature’  and of ‘creation’, for which  every  culture has its  myths and worldviews (Nicholas, 2000).  This is an  area  where,  in contrast to  ‘bioethics’,  there  is a significant  and explicit  input  from spiritual/ religious  traditions. Generally,  two broad approaches of  environmental  ethics can  be discerned  (Nicholas  2000). Some approaches are human-centred;  the environment is  valued for what  it can provide  for humans, and  we  protect  it  so that  the  resources  will  be  there  for  our  use  and  that  of  future generations.  In  the   ecocentric  approach, the  environment is valued not  for what it  can  give  us, but because  it has  intrinsic  value, separate  from  any value  that  we may give  it.  This  is  a position  held by some  secular  environmental  movements, but the same value is  expressed in  some  Christian  traditions that see the  value of creation as coming from God,  with  humans  merely custodians of it.
Both the  ecocentric and  human-centred approaches can accommodate a position that  recognises  that humans  are not  outside  the  natural world, but  are part of  the  biosphere, that  actions we  take  that have  an impact  on the  environment will also  affect  humans, and that  our own  health  and survival  requires us to attend to  the  health  and sustainability  of  the  planet. This orientation has  been captured  in  recent  decades by  the concept  of Gaia, which  is used  both  as  a scientific  theory and as a  spiritual concept.  The  ethical implications  of the  Gaia concept  can  be interpreted in  different  ways  either  as the consequential imperative  that we  must  care  for the  environment to  ensure our own survival (which  we value),  or  as the  responsibility  or duty to  care  for something entrusted to our  care  or  over  which  we  have some  power,  and  of  which  we  are  a  part.

The  spiritual division  refers to  religion or  the  belief  of  individual or  people. Kershen  (1999)  emphasized  that  the acceptance and  success of biotechnology will be  based  on  the  ideological beliefs and the  cultural values adopted by individual human  beings  who, in  turn  will  shape  societal beliefs and  values. There  are principles  or guidelines  on  how  should  we live  and what is the  right thing to do  in most religions.  In Islam for example,  the  sources  of  rules are  first and foremost is  the  al-Qur’an, followed by  the  sunnah or hadith (traditions  of the Prophet  Muhammad)  (Hamid 2000). In  facing  a problem that is  not answered in a straightforward  manner by earlier two sources, ijma’  (consensus)  have  to  be sought collectively from  the views  of mujtahid (Muslim jurists who are competent enough  to deduce  precise inferences regarding  the commandment from  the alQur’an  and sunnah). The  use  of Qawaid Fiqhiyyah  (Islamic  Legal Maxim) to achieve  the  syariah’s objective  is also  useful and relevant to  strengthen the earlier  verdict  (Mohamad Akram  2006).


Ethically   justifiable  conclusions  depend on  two  kinds  of judgements: factual (based  on  scientific evidence and  theories), and  ethical (based  on  the best available moral  philosophy theories) (Comstock  2000;  Thomas 2001).  Decisions on  what is right to  do  will be  made  after  balancing the benefits of  a technology like  genetic  engineering  with  its potential harms. However, ethical decisions concerning  genetic modification  has proved  to be  very  challenging because  it brings together  so many ethical aspects of our  life  that include personal,  medical, environmental,  political,  business,  animal and  scientific  ethics  besides  religion.
A  method for addressing ethical  issues related  to  modern biotechnology as recommended  by Comstock  (2000)  with  several modifications is suitable  for  use  in  Malaysia. He suggested  working methodically  through  a series  of questions:

Describe  briefly  (a)  the  harm  or potential harm;  (b)  who  are the  stakeholders, that  is, all  of  the persons  and non-persons (animals,  ecosystems, other  nonhuman entities) who  may  be harmed; (c) the extent to  which these  stakeholders  will be harmed; and (d) the  distribution of harms  (are  those at risk of  being harmed  the same or  different  from those who  may  benefit?).
A  technology is acceptable if  it  creates  an  acceptable set  of consequences for  every  member  of society  (Fischhoff  1999).  So  in  order  to determine  acceptable  risk-benefit tradeoffs, it may  be  useful  to  ask or survey  a properly chosen  sample of citizens  to  study their attitude  and acceptance towards the  tradeoffs.  The  Malaysian stakeholders in  the  Klang Valley for  example  were more  supportive  of  GM  palm oil (modified to  reduce  its  saturated  fat) and GM insulin compared  to GM soybean  (resistant  to herbicide) (Latifah et  al. 2009). In Islam, the analysis  of  risk-benefit related to  modern biotechnology   is  provided under the Maqasid Shariah principle.

Sound ethical  judgments go hand-in-hand  with  thorough  understanding  of  the scientific  facts.  In a given  case,  we  may need to ask: (a) Is  the scientific  information about harm being presented reliable, or is  it fact, hearsay, or  opinion?  (b)  What information  do we  not know  that  we  should know  before  making the  decision?
In  the  case  of  modern  biotechnology  products, there  is limited information on  their safety.  This scenario  stresses the  need for  more  balanced approach  by  scientists and governments in giving equal  importance to independent risk assessment  studies besides product development.

In assessing the various  courses  of  action,  emphasize  creative problem-solving, seeking to find  win-win  alternatives  in  which  everyone’s  interests are  protected. Here  we  must  identify (a)  what objectives each stakeholder wants  to obtain; (b) how many methods are available  by which  to achieve  those objectives;  (c) what are  the advantages  and  disadvantages  of each alternative? 
In  case of conflict  between  several  options,  Josephson  Institute (Svatos 2000)  recommended that the option which  presents  an  ethical value  (such as trustwortiness, respectful,  responsible, fair,  caring, civic  virtue)  is chosen compared  to  non-ethical values (such  as  money, power).   For  example, the company  Pioneer  Hi-Breed has  chosen an  ethical  option by  withdrawing its products,  GM peanuts  (which contain a gene  from  Brazilnut)  which  has  been found to be  allergenic despite  having invested  much money on  the development of  the  GM  peanuts (Nordlee  et al. 1996).

 Since ethical theorists  are  divided  about which  theories  is  best,  and  each  principle has its own  strengths  and  weaknesses, I  agree with  the  suggestion  by Comstock (2000)  to  use at least  three  most  common principles relevant  to modern biotechnology, one by  one.  Should  all three  principles converge  on  the  same conclusion, then  there  is  good reason to  think that the  conclusion  is  morally justifiable. 
However, I strongly  recommended  the  use  of  additional theories/ principles  such  as  environmental ethics  as highlighted by the Nutfield Council on Bioethics (1999) and Thomas  (2001),  and the Precautionary Principle (BABAS 1999;  Nutfield Council  on Bioethics 1999). I also  strongly  agree  with  the proposition  by Gunn  and Tudhope (2001) and Hamid (2000) that  the religious or spiritual aspects  and cultural values of  people  need  to  be  seriously  considered especially in multi-ethnic and  multi-religion country such  as Malaysia. 
In  Malaysia  since  the  majority  of  the  citizens are Muslims  and the official  religion  is Islam, Divine  law should be  used as  the  moral basis for  law  and society  (Hamid 2000;  Majdah  2001).  The  prohibitory  status  of  modern biotechnology  applications  should be  studied case  by  case  and in line with  the Islamic  principles.  In Islam, the  sources of  rules  are first and foremost is the  alQur’an, followed by the sunnah or  hadith (traditions  of the Prophet Muhammad) (Hamid 2000).  In facing a problem  that is not answered  in  a straightforward manner  by  earlier  two sources,  ijma’  (consensus) have  to be  sought collectively from  the views  of mujtahid  (Muslim jurists  who  are  competent  enough  to  deduce precise inferences regarding the  commandment from the al-Qur’an  and sunnah). The last  source  of  guideline  for the Muslims  is aq’il (reasoning).  Issues  of halal is also  very important for  Muslims (BABAS 1999). The  acceptance  of  modern biotechnology applications by other major religions in Malaysia such  as  Buddha, Hindu and Christian  should  also  be considered. 

Does the  decision  we have  reached allows  all stakeholders either to  participate in  the  decision  or to  have  their  views  represented?  If  a compromise  solution  is deemed necessary  in  order  to  manage  otherwise intractable  differences,  has the compromise been reached  in  ways that  has  allowed all interested parties to have their  interests articulated, understood, and  considered?  If  so, then  the  decision is justifiable  on  ethical grounds. 
For example before the start of large scale production  of a  biotechnology product or even  better at the  product development stage in  Malaysia, the views of  relevant stakeholders  such  as  the representatives of  the  consumers,  the industries, the religious  scholars  of  major  religions  in Malaysia,  policy makers and the scientists  be  sought. If  all stakeholders  agree  on  a certain  decision whether to  support, reject or delay  decision  for certain valid reasons  such as to gather more  information, the  relevant authorities  in  Malaysia have  to  abide  by the  decisions. 

Modern biotechnology  if  applied  responsibly,  have  vast potential  to  benefit mankind  and the environment. At the  same  time,  the speed  of  genetic  change  by genetic engineering  may  represent  a  new potential  and unexpected  impact  on biosphere (FAO  2000). It  is not possible  to  make sweeping generalizations about modern  biotechnology; each  application  must  be  fully  analyzed on  a case-bycase  basis. Through  complete  and transparent  assessments (scientifically  and ethically) of  modern  biotechnology applications, and recognition  of  their short and  long term  implications  towards   human,  environment and society  and acknowledging scientific   uncertainties  and taking  possible precautionary measures, only  then, the  controversies  can  be  less contentious  and more constructive, and the  full benefits  of  modern biotechnology may  be maximized. Ethical guidelines  regarding the  status  of  modern biotechnology applications in Malaysia should be  in  line  with the Islamic  principles as well  as the consideration of  the  acceptance  by other  major  religions in Malaysia.

MALIM  Bil.  10 (2009)
Pusat  Pengajian  Umum 
Universiti Kebangsaan  Malaysia





Recent Posts